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Abstract. We investigate the effect of the jamming transition on short-range correlation
functions in the Nagel–Schreckenberg cellular automaton model of single-lane traffic. At high
densities the structure of the time-dependent correlation functions is double peaked. One peak
corresponds to moving cars, the other to blocked cars. The emergence of the latter peak as well
as the occurrence of short-range anticorrelations behind the propagating peak is related to the
jamming transition. At even higher densities the peak corresponding to moving cars disappears
which is an indication of a superjamming transition.

1. Introduction

Particle hopping models in traffic have attracted considerable interest both in the physics and
the traffic engineering community [1–3]. For one-dimensional single-lane traffic, the lane
consists ofL cells of equal size which can be either empty or occupied by a vehicle with
velocity v = 0, 1, . . . , vmax. Motion takes place by hopping between cells. Particle hopping
models can be divided into two classes according to their boundary conditions: periodic with
conservation of the number of particles or open with injection and extinction of particles.
In our investigations we consider periodic boundary conditions. Another distinguishing
criterion is the manner in which sites are updated. The asymmetric stochastic exclusion
process (ASEP), which was first solved by Derridaet al [4] for open boundary conditions
and maximum velocityvmax= 1, uses random sequential update. In the cellular automaton
model developed by Nagel and Schreckenberg [5], however, all vehicles are handled in
parallel during one timestep according to the following rules:

increasev by 1 if v < vmax (1)

decreasev to avoid crashes with front cars (2)

decreasev by 1 with probabilityp if v > 0 (3)

move forwardv sites. (4)

Our considerations are based on the Nagel–Schreckenberg (NS) model withvmax = 5,
p = 0.5, as it shows a better congruence with real traffic data than the ASEP model. Due
to the NS model–as it can also be observed in real traffic—the dynamics of the system can
be resolved into three regimes depending on the car densityρ.

0< ρ 6 ρ1 : free flow. Interactions between cars are rare, there is
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a very small probability that ‘minijams’ occur which

immediately resolve.

ρ1 < ρ 6 ρ2 : jamming. Typical for this stage is the coexistence of free

flow and jamming [6]. In the spacetime diagram [5] we

see that single jams spontaneously occur and dissolve after

a while, but that there are also cars moving with maximum

velocity vmax.

ρ2 < ρ 6 1 : superjamming. The whole system is congested, the jamming

waves become connected and form an infinite wave [7].

This results not only from the original NS model [6, 7] but also from its cruise control limit
[8], from its continuous limit [9], and from the model developed by Takayasu and Takayasu
[10] which corresponds to the cruise control version of its deterministic limit forvmax= 1.

It is obvious that the above characterization of free flow, jamming and superjamming is
rather vague. In what way, for example, does a minijam in the free flow phase differ from
a jam occurring in the jamming phase? In order to give a precise definition of free flow
and jamming, Nagel and Paczuski [8] suggested considering a car to be jammed if it does
not go with maximum velocity. In a site-oriented definition [7] a site is said to be in a jam,
if two or more cars are within a window of five cells centred on a site.

These definitions are, nevertheless, arbitrary. What is still missing is a physical
quantity which exactly determines free flow, jamming and superjamming. Accordingly,
investigations were concerned in recent years with the transition from freely moving to
jammed traffic, and with the question of whether an order parameter for this transition does
exist.

In this context correlation functions which have already been used in the ASEP model
[11–14] are of special interest. In the NS model as well, they are not only useful to get
better analytical results [15–17]. As is known from statistical physics correlation functions
are a powerful tool to investigate phase transitions and, therefore, they can give a better
insight into the problem mentioned above. By investigating the spatial correlation function
near the deterministic limit [18] and the correlation function in car-space [19] it turned
out that the transition from freely moving to jammed traffic is not sharp but rather like a
crossover.

So, the transition from jamming to superjamming is still an open question. This problem
has already been handled forp = 0.25 by investigating the average number of jamming
waves surviving at least until a timet [7]. Correlation functions, however, have not
extensively been used in this context before.

In the following we consider the effect of the transition from freely flowing to jammed
and from jammed to superjammed traffic, respectively, on short-range correlation functions
depending on space and time. We furthermore deal with the question of whether free
flow, jamming and superjamming can be detected with the help of short-range correlation
functions.

2. Correlation function

The steady state correlation function on which our consideration is based has the form

C(i, t) =< η(i ′, t ′)η(i + i ′, t + t ′) > i ′, t ′ − ρ2 (5)
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where

ρ = number of cars

system size

is the car density and

η(i ′, t ′) = 1 if site i ′ is occupied at timet ′

η(i ′, t ′) = 0 otherwise.

Furthermore< · · · > i ′, t ′ describes the spatial and temporal average over allL sitesi ′ and
over timest ′ taken from our simulation of the steady state. In addition, ensemble averages
were also carried out.

In order to haveC(i, t) = 0 for the completely uncorrelated system we had to subtract
the termρ2 in (5) as usual.

Normally we had to wait 10L timesteps (updates of the whole system), until the
steady state was reached and then measured the correlation function. At the measurements
themselves we took the average over 500 systems and 10 000 timesteps.

3. Results

It is important to mention thatC(i, t = 0) represents a kind of ‘snapshot’ of the lane
whereasC(i, t > 0) contains dynamical information. Therefore, we have to distinguish
between correlation functions fort = 0 and those fort > 0 in the following.

For t = 0 the correlation function is symmetric showing a strong peak ati = 0
(figure 1(a)). For t = 1, 2, 3 a peak moves to the right for increasing time difference
representing the motion of the cars (figures 1(b)–(d)). It can be seen that randomization
has an influence on the peak’s shape. The randomization probability isp = 0.5. Therefore,
on average, half of the cars moving withvmax slow down at each timestep resulting in a
broadening of the peak. The lower the density the more this broadening (which goes from
the lattice sitei = t (vmax− 1) to i = tvmax) corresponds to what can be calculated from
simple combinatorics. This can be explained by considering a certain sitei. The probability
that a car is slowed down according to rule (3) isp = 0.5. Going one timestep further, the
probability that a car on i decreases its velocity due to (3) once again is 0.25, at the third
timestep it is 0.125 and so on. This observation is confirmed at even larger time differences
t = 4, 5, 6 in figure 2. At higher densities the asymmetry of the peak becomes more and
more apparent as cars have to slow down in order to avoid crashes with the front cars.

At even higher densities (ρ ≈ 0.3) the propagating peak disappears as shown in figure 3.
The correlation becomes monotonously falling for alli with t (vmax− 1) 6 i 6 tvmax and
only a shoulder of the former peak can be seen. At densitiesρ ≈ 0.4 there is not even a trace
of the propagating peak. Remarkably, these densities roughly coincide with the percolation
densityρp = 0.42, Cśanyi and Kert́esz described (on the basis of their definition of jamming)
the second transition density as where the isolated jamming waves start to percolate [7].

The disappearance of the propagating peak and the percolation of the isolated jamming
waves are the motivation for the introduction of the expression ‘superjamming’ in order to
describe this transition.

With increasing density a peak aroundi = 0 emerges and it develops a maximum at
i = −1 corresponding to the hindrance the back car feels in the jam. In other words this
peak describes the correlation with the back car. Accordingly, this peak does not disappear
for very low densities, too. It just becomes nearly invisible and moves to the left for
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Figure 1. Correlation functions for the correlation timest = 0, 1, 2, 3 with the car densities
ρ = 0.05, 0.08, 0.1, 0.12, 0.15 each (L = 4096). Whereas fort = 0 the correlation functions are
symmetric showing a strong autocorrelation peak, fort = 1, 2, 3 the coexistence of the freely
flowing and the jammed state can be seen. All diagrams have in common that coming from
low densities anticorrelations develop in the neighbourhood of the autocorrelation peak. From
a certain density on, however, they decrease and finally vanish.
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Figure 1. (Continued)
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Figure 2. Correlation functions for different correlation times (L = 4096, ρ = 0.1). For
increasing correlation times the autocorrelation peak moves to the right.

decreasing densities which is due to the fact that for very low densities the cars disperse
over the system and their interaction with each other is very small.

In connection with the jamming–superjamming transition another interesting feature
should be mentioned.

For t = 0 and high densities, there are minor maxima ati = ±1 (figure 4(c)); for
|i| > 2 the correlation functions exponentially decay.

In order to understand this phenomenon we need a closer look at the deterministic case.
As we can see from figure 4(c), the correlation functions show strong anticorrelations at
i = ±1, which are maximally developed at the densityρ = 0.5. Also, with respect to the
structure of the correlation functions, there is a striking relationship with the casevmax= 1.

For vmax = 1 we have a transition atρ = 0.5. Corresponding to car–hole-symmetry,
each car is surrounded by empty space forρ < 0.5 whereas forρ > 0.5 we have single
holes surrounded by cars. Consequently, atρ = 0.5 each cell is alternately occupied by
a car or empty. At this density the correlation functionCvmax=1,p=0 (i, t = 0) shows a
periodic structure: for|i| = 2n we have maxima, for|i| = 2n + 1 minima (withn ∈ Z).
Both minima and maxima are maximally developed atρ = 0.5.

As is well known for the casevmax= 5, the cars arrange themselves atρ = 1
vmax+1 = 1

6
in such a way that there are five empty cells between two cars each. This feature is inherited
to higher densities (figure 4(c)). At i = ±1 there are strong anticorrelations. These are
maximally developed betweenρ = 0.4 andρ = 0.5. For |i| > 2 C(i, t = 0)p=0 decays
although it still shows a structure similar to the casevmax= 1.

Returning top = 0.5 we see only traces of the anticorrelations ati = ±1. For |i| > 2
the correlation functions show no structure and just decay exponentially.
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Figure 3. Correlation functions for different system sizes (ρ = 0.08). FromL = 4096 on, no
remarkable change takes place.

To simplify matters, we choosei = ±2 as a representative point in figure 6(b) (but
what we observe there is also valid for|i| > 2). Interestingly,C(i = ±2, t = 0) reaches
its maximum atρ = 0.39, which roughly coincides with the density where the propagating
peak fort > 0 completely vanishes (figure 4(a)) and with the percolation density of Csányi
and Kert́esz [7].

What figures 1(a)–(d) have in common, is that at very low densities and with increasing
densities, anticorrelations develop around the propagating peak, that is to say, the effective
repulsion due to the motion of the car is apparent. The reason for the anticorrelations
is that a moving car has to have free space behind (where it comes from) and in front
(in order to be able to move) and for low densities the cars self-organize in a way that
they can move. Without random braking events this would lead to a perfect free flow
below the density corresponding to the maximum in the fundamental diagram. However,
due to the stochasticity of the NS model, at a density betweenρ = 0.07 and 0.08 the
above tendency changes and the anticorrelations start todecreasewith increasing densities
corresponding to the unavoidable disturbances caused by other cars. At even higher densities
the anticorrelations vanish.

But before we come back to anticorrelations we need a closer look at the influence of
the system sizeL on the correlation functions.

For very low and for very high densities the correlation functions for different system
sizesL coincide. Only for densities near the transition from freely moving to jammed traffic
are the curves different. In figure 3 we compare the correlation functionsC(i, t = 1) for
the system sizesL = 1024, 4096, 8192 with each other (ρ = 0.08). It is obvious that for
system sizes larger thanL = 4096 no remarkable change takes place. Thus, correlation
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Figure 4. (a) Correlation functions for the car densitiesρ = 0.2, 0.3, 0.4 andt = 1. Note that
for p = 0.3 the cars are already in the superjam, although there are traces of the propagating
peak. (b) Correlation functions for the car densitiesρ = 0.15, 0.39, 0.41 andt = 0. We
see that minor minima ati = ±1 appear for high densities. (c) Correlation functions for the
deterministic case (ρ = 0.4, 0.5, 0.6, 0.7, 0.8 andt = 0). At i = ±1 anticorrelations can be
obtained.

functions forL = 4096 can be considered as correlation functions in an infinite system in
good approximation.

4. The effect of the jamming transition

One of the main advantages of the NS model is that in spite of its simplicity it captures
the most important features of single-lane traffic flow including the transition from free
flow to jamming. Recently it has been shown [18, 19] that the transition is not sharp
but rather of the crossover type. With the above choice of the parametersp, vmax the
transition can be located betweenρ = 0.071 and 0.072. Interestingly, the densities where
the anticorrelations are maximally developed and where the jam peak ati = −1 starts to
form numerically coincide with this density. The origin of the jamming transition and that
of these two signatures is the same: there is no more possibility for the cars to arrange
themselves in a way where virtually no hindrance from each other occurs, they start to feel
each other. As a consequence both signatures can be used as practical ‘definitions’ of the
jamming transition.

In order to illustrate this we look at the minima of the anticorrelations as a function of
the car density. Taking the derivatives of the resulting curves we get the diagrams shown
in figure 5.
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Figure 4. (Continued)
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Figure 5. Slope of the minima of the anticorrelations as a function of the car density. In (a)
((b)) we consider the anticorrelations ati = −1 for t = 0 andi = 5(t − 1) for t = 1, 2, 3 (at
i = 5t + 1 for t = 0, 1, 2, 3) describing the space to the front (back) car. According to our
definition the transition from freely moving to jammed traffic takes place at the density where
the curves in (a), (b) become zero. It is obvious that the density at which the transition happens
is not clearly determined and therefore we do not have a phase transition.
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5. The effect of the superjamming transition

In this paper the system is said to be superjammed if the correlation function fort > 0 is
monotonously falling for alli with t (vmax− 1) 6 i 6 tvmax. It is true that traces of the
propagating peak may occur in the superjammed region, too, but in this case we cannot call
them a peak any more.

In order to get a precise definition for the transition from jamming to superjamming we
denote the site where the propagating peak has its maximum at low densities withimax and
introduce

dC = C(imax, t > 0)− C(imax− 1, t > 0).

According to this definition the jamming-superjamming transition takes place at dC = 0.
For dC > 0 we have jamming, for dC < 0 superjamming.

From figure 6(a) it is obvious that this transition is even more blurred than the transition
from freely moving to jammed traffic. This is not only valid fort = 1, 2, 3 as shown in
figure 6(a) but also for larger time differences.

6. Conclusions

By investigating the short-range correlation functions in the NS model we found that
depending on the car densityρ the dynamics of the system can be divided into three
regimes.

0< ρ 6 ρ1 : free flow. The free flow is characterized by anticorrelations

around a propagating peak, that is, in free flow moving cars

are surrounded by empty space.

ρ1 < ρ 6 ρ2 : jamming. The coexistence of free flow and jamming

manifests itself in the double peak structure of the

correlation function. The jamming causes a maximum at

i = −1 according to the hindrance the back car feels in

the jam.

ρ2 < ρ 6 1 : superjamming. The propagating peak disappears

as a consequence of the fact that in free flow moving cars

do not exist any longer.

In order to defineρ1 (ρ2), where the transition from freely flowing (jammed) to jammed
(superjammed) traffic takes place, we proceed as follows. We equate (as a practical
definition) ρ1 with the density where the anticorrelations are maximally developed and
ρ2 with the density where the correlation functionC(i, t) becomes monotonously falling
for all i where for lower densities the propagating peak is observed.

On the basis of these definitions it turns out that both the transition from freely moving
to jammed traffic and from jammed to superjammed traffic is not sharp.

The development of minor maxima fort = 0 in the superjamming region is a hint at
the fact that single jamming waves become connected.

Furthermore, we showed that the short-range correlation functions are only slightly
influenced by the system sizeL, so that an infinite system is well approximated byL = 4096.

Finally, we want to mention that the free flow-jamming and the jamming–superjamming
transition differently manifest themselves in short-range correlation functions forp = 0. A



9798 S Cheybani et al

Figure 6. (a) dC = C(imax, t > 0) − C(imax− 1, t > 0) as a function of the car density
(imax: maximum of the propagating peak). Defining dC = 0 as the transition point we see that
the transition from jammed to superjammed traffic is not sharp. (b) Correlation function for
t = 0 and i = ±2 in dependence on the car density. We see thatC(i = ±2, t = 0) reaches
its maximum atρ = 0.39, where the correlation with the back and the front car are maximally
developed.
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detailed analysis of short-range correlation functions in the deterministic case, however,
would go beyond the scope of this paper and will be published elsewhere.
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